skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Sidharth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We tackle the problem of recovering a complex signal $$\vx\in\mathbb{C}^n$$ from quadratic measurements of the form $$y_i=\vx^*\vA_i\vx$$, where $$\{\vA_i\}_{i=1}^m$$ is a set of complex iid standard Gaussian matrices. This non-convex problem is related to the well understood phase retrieval problem where $$\vA_i$$ is a rank-1 positive semidefinite matrix. Here we study a general full-rank case which models a number of key applications such as molecular geometry recovery from distance distributions and compound measurements in phaseless diffractive imaging. Most prior work either addresses the rank-1 case or focuses on real measurements. The several papers that address the full-rank complex case adopt the semidefinite relaxation approach and are thus computationally demanding. In this paper we propose a method based on the standard framework comprising a spectral initialization followed by iterative gradient descent updates. We prove that when the number of measurements exceeds the signal's length by some constant factor, a globally optimal solution can be recovered from complex quadratic measurements with high probability. Numerical experiments on simulated data corroborate our theoretical analysis. 
    more » « less